Descrizione Una stella è un corpo celeste che brilla di luce propria. In astronomia e astrofisica il termine designa uno sferoide luminoso di plasma che genera energia nel proprio nucleo attraverso processi di fusione nucleare; tale energia è irradiata nello spazio sotto forma di radiazione elettromagnetica, flusso di particelle elementari (vento stellare) e neutrini. Quante stelle vediamo ? Le hanno contate, sono in tutto circa 6000 quelle che si vedono in ambedue gli emisferi, quindi una persona può vederne al massimo 3000. Ciò è possibile solo in un cielo perfettamente buio, privo di nuvole o foschia e senza la piaga dell'inquinamento atmosferico e luminoso che sporca i nostri cieli. Da un centro cittadino molto illuminato, come Latina, è difficile vederne più di due/tre in piena notte; appena si esce dal centro se ne possono vedere alcune decine; si arriva alle centinaia oppure migliaia di stelle se osserviamo il cielo dalle campagne e sulle montagne vicine ma lontano dai centri abitati. Ci sono stelle più luminose e stelle meno luminose, ma tutte sono dei puntini microscopici, talmente piccoli che non hanno superficie. Quelle più luminose sembrano più grandi delle altre ma sono soltanto più luminose e la maggiore intensità di luce le fa apparire ai nostri occhi ed al nostro cervello anche più grandi. La più luminosa di quelle che vediamo è anche la più vicina: è Sirio. Sirio è la stella più luminosa della costellazione del Cane Maggiore e un po' a sinistra c'è la stella Procione che è la più luminosa del Cane Minore. Abbiamo detto che Sirio è la stella più vicina di quelle che vediamo nel nostro cielo. Vicina...quanto? 8 Anni Luce. Tutte le stelle che noi vediamo in cielo distano tra gli 8 ed i 2000 anni luce e sono le più vicine fra tutte quelle della nostra galassia che in totale ne conta circa 250 miliardi (miliardo più miliardo meno....) e di queste, le più lontane si trovano a circa 100.000 anni luce di distanza. |
Il sistema delle costellazioni fu perfezionato nel II millennio a.C. dalla civiltà babilonese, che diede gli attuali nomi - quasi tutti di origine sumerica - alle costellazioni zodiacali e creò un calendario lunare, incentrato sul susseguirsi dei fenomeni celesti che scandivano il ciclo delle stagioni. Nella zona di Babilonia è stato rinvenuto un elenco con tutte le costellazioni e gli oggetti celesti visibili, che allora erano disposti nel firmamento non molto diversamente dalla loro attuale posizione. La civiltà mesopotamica aveva anche un grande interesse per l'astrologia, allora ritenuta una vera e propria scienza.
La civiltà egizia aveva delle elevate conoscenze astronomiche: testimonianza ne è il ritrovamento a Dendera della più antica ed accurata carta stellare, datata al 1534 a.C. Anche i Fenici, popolo di navigatori, avevano buone conoscenze astronomiche. Essi si riferivano già all'Orsa Minore come mezzo di orientamento per la navigazione, e si servivano come indicatore del Nord della Stella Polare, che nel 1500 a.C. doveva essere già molto vicina al Polo Nord celeste. La moderna scienza astronomica deve molto all'astronomia greca e a quella romana. 48 delle 88 costellazioni moderne furono codificate e catalogate già nel II secolo d.C. dall'astronomo Claudio Tolomeo, ma ancora prima di lui astronomi del calibro di Eudosso di Cnido (V-IV secolo a.C.) ed Ipparco di Nicea (II secolo a.C.) stilarono cataloghi stellari sulla base di quelli prodotti dalle civiltà precedenti da essi stessi studiate. |
La maggior parte delle stelle è identificata da un numero di catalogo; solo una piccola parte di esse, in genere le più luminose, ha un nome vero e proprio che deriva spesso dalla denominazione originale araba o latina dell'astro. Molti di questi nomi sono dovuti ai miti loro associati, alla loro posizione nella costellazione (come Deneb - α Cygni -, che significa la coda poiché corrisponde alla coda del Cigno celeste), oppure al particolare periodo o alla particolare posizione in cui esse compaiono nella sfera celeste nel corso dell'anno; un esempio in questo senso è Sirio, il cui nome deriva dal greco σείριος (séirios), che significa ardente, scottatore. Infatti gli antichi greci associavano la stella al periodo di maggior caldo durante l'estate, la canicola, poiché dal 24 luglio al 26 agosto l'astro sorge e tramonta con il Sole (levata eliaca). A partire dal XVII secolo si iniziò a dare alle stelle, in certe regioni del cielo, i nomi delle costellazioni cui appartenevano. L'astronomo tedesco Johann Bayer creò una serie di mappe stellari (raccolte nell'atlante Uranometria) in cui si servì, per denominare le stelle di ciascuna costellazione, delle lettere dell'alfabeto greco (assegnando la lettera α alla più luminosa) seguite dal genitivo del nome della costellazione in latino; questo sistema è noto come nomenclatura di Bayer. Tuttavia, poiché le lettere greche sono molto limitate, capita che in talune costellazioni, che contengono un elevato numero di stelle, si rivelino insufficienti; Bayer pensò allora di ricorrere alle lettere minuscole dell'alfabeto latino una volta esaurite quelle greche. In seguito l'astronomo inglese John Flamsteed inventò un nuovo sistema di nomenclature, denominato in seguito nomenclatura di Flamsteed, molto simile a quello di Bayer, ma basato sull'utilizzo di numeri al posto delle lettere greche; il numero 1 però non era assegnato alla stella più luminosa, ma alla stella con ascensione retta (una coordinata astronomica analoga alla longitudine terrestre) più bassa. A seguito della scoperta delle stelle variabili, si è deciso di assegnare loro una nomenclatura diversa, basata sulle lettere maiuscole dell'alfabeto latino seguite dal genitivo della costellazione; la lettera di partenza non è però la A, ma la R, cui seguono S, T e così via; la A viene immediatamente dopo la Z. Una volta esaurite le lettere dell'alfabeto si riparte con RR e via dicendo (ad esempio S Doradus, RR Lyrae ecc.). Il numero di variabili scoperte è cresciuto al punto che in alcune costellazioni si è resa necessaria l'adozione di un nuovo sistema di nomenclature, che prevede la lettera V (che sta per variable) seguita da un numero identificativo e dal genitivo latino della costellazione (ad esempio V838 Monocerotis). In seguito, con il progredire dell'astronomia osservativa e l'utilizzo di strumenti sempre più avanzati, si è resa necessaria l'adozione di numerosi altri sistemi di nomenclatura, che hanno dato origine a nuovi cataloghi stellari. La sola organizzazione abilitata dalla comunità scientifica a conferire i nomi alle stelle, e più in generale a tutti i corpi celesti, è l'Unione Astronomica Internazionale.
|
La classificazione stellare è generalmente basata sulla temperatura superficiale delle stelle, che può essere stimata mediante la legge di Wien a partire dalla loro emissione luminosa. La temperatura superficiale è all'origine del colore dell'astro e di diverse particolarità spettrali, che consentono di dividerle in classi, a ciascuna delle quali è assegnata una lettera maiuscola. I tipi spettrali più utilizzati sono, in ordine decrescente di temperatura: O, B, A, F, G, K, M; in lingua inglese è stata coniata una frase per ricordare facilmente questa scala: Oh Be A Fine Girl, Kiss Me. Le stelle di tipo O, di colore blu-azzurro, sono le più massicce e luminose, visibili da grandissime distanze, ma anche le più rare; quelle di tipo M, rosse e solitamente grandi appena da permettere che abbia inizio la fusione dell'idrogeno nei loro nuclei, sono invece le più frequenti. Esistono poi diversi altri tipi spettrali utilizzati per descrivere alcuni tipi particolari di stelle: i più comuni sono L e T, utilizzati per classificare le nane rosse meno massicce più fredde e scure (che emettono principalmente nell'infrarosso) e le nane brune; di grande importanza sono anche i tipi C, R ed N, utilizzati per le stelle al carbonio, e W, utilizzato per le caldissime ed evolute stelle di Wolf-Rayet.
La classificazione di certe stelle richiede l'uso di lettere minuscole per descrivere alcune situazioni particolari rilevate nei loro spettri: ad esempio, la "e" indica la presenza di linee di emissione, la "m" indica un livello straordinariamente alto di metalli e "var" indica una variabilità nel tipo spettrale. Le nane bianche godono di una classificazione a parte. Indicate genericamente con la lettera D (che sta per l'inglese dwarf, nano), sono a loro volta suddivise in sottoclassi che dipendono dalla tipologia predominante delle linee riscontrate nei loro spettri: DA, DB, DC, DO, DZ e DQ; segue poi un numero che identifica la temperatura del corpo celeste. |
![]() |
Le stelle si formano all'interno delle nubi molecolari, delle regioni di gas ad "alta" densità presenti nel mezzo interstellare, costituite essenzialmente da idrogeno, con una quantità di elio del 23–28% e tracce di elementi più pesanti. Le stelle più massicce che si formano al loro interno le illuminano e le ionizzano, creando le cosiddette regioni H II.
|
La sequenza principale è una fase di stabilità durante la quale le stelle fondono l'idrogeno del proprio nucleo in elio a temperatura e pressione elevate; le stelle trascorrono in questa fase circa il 90% della propria esistenza. Le stelle la cui massa è compresa tra 0,4 ed 8 masse solari attraversano, al termine della sequenza principale, una fase di notevole instabilità: il nucleo subisce una serie di collassi gravitazionali, incrementando la propria temperatura e dando inizio a diversi processi di fusione nucleare che riguardano anche gli strati immediatamente contigui al nucleo; gli strati più esterni invece si espandono per far fronte al surplus energetico proveniente dal nucleo e gradualmente si raffreddano, assumendo di conseguenza una colorazione rossastra. La stella, dopo esser passata per la fase instabile di subgigante, si trasforma in una fredda ma brillante gigante rossa. Durante questo stadio la stella fonde l'elio in carbonio e ossigeno e, qualora la massa sia sufficiente (~7-8 M), una parte di quest'ultimo in magnesio. Parallela a quella di gigante rossa è la fase di gigante blu, che intercorre come meccanismo di compensazione qualora la velocità delle reazioni nucleari subisca un rallentamento. Si stima che il Sole diverrà una gigante rossa tra circa 5 miliardi di anni: le sue dimensioni saranno colossali (circa 100 volte quelle attuali) e il suo raggio si estenderà sino quasi a coprire l'attuale distanza che separa la stella dalla Terra (1 UA). Anche le stelle massicce (con massa superiore ad 8 M), al termine della sequenza principale, subiscono numerose instabilità, che le portano ad espandersi allo stadio di supergigante rossa. In questa fase, l'astro fonde l'elio in carbonio e, all'esaurimento di questo processo, si innesca una serie di successivi collassi nucleari ed aumenti di temperatura e pressione che avviano i processi di sintesi di altri elementi più pesanti: neon, silicio e zolfo, per terminare con il nichel-56, che decade in ferro-56. In tali stelle può svolgersi in contemporanea la nucleosintesi di più elementi all'interno di un nucleo pluristratificato. In ciascuno degli strati concentrici avviene la fusione di un differente elemento: il più esterno fonde idrogeno in elio, quello immediatamente sotto fonde elio in carbonio e via dicendo, a temperature e pressioni sempre crescenti man mano che si procede verso il centro. Il collasso di ciascuno strato è sostanzialmente evitato dal calore e dalla pressione di radiazione dello strato sottostante, dove le reazioni procedono a un regime più intenso. Qualora subiscano un rallentamento i processi di fusione nucleare, le supergiganti rosse possono attraversare uno stadio simile a quello di gigante blu, che prende il nome di supergigante blu; l'astro tuttavia, prima di raggiungere questo stadio, passa per la fase di supergigante gialla, caratterizzata da una temperatura e da dimensioni intermedie rispetto alle due fasi. Le stelle supermassicce (>30 M), dopo aver attraversato la fase instabile di variabile blu luminosa, man mano che procedono lungo il loro percorso post-sequenza principale accumulano al loro centro un grande nucleo di ferro inerte; divengono così stelle di Wolf-Rayet, oggetti caratterizzati da venti forti e polverosi che provocano una consistente perdita di massa.
|
Nebulosa Elica NGC 7293 |
Quando una stella è prossima alla fine della propria esistenza, la pressione di radiazione del nucleo non è più in grado di contrastare la gravità degli strati più esterni dell'astro. Di conseguenza il nucleo va incontro ad un collasso, mentre gli strati più esterni vengono espulsi in maniera più o meno violenta; ciò che resta è un oggetto estremamente denso: una stella compatta, costituita da materia in uno stato altamente degenere. La tipologia di stella compatta che si viene a formare differisce in relazione alla massa iniziale della stella. |
Gran parte delle stelle ha un'età compresa tra 1 e 10 miliardi di anni. Vi sono stelle che però hanno età prossime a quella dell'Universo (13,7 miliardi di anni): la stella più vecchia conosciuta, HE 1523-0901, ha un'età stimata di 13,2 miliardi di anni. |
![]() |
Il campo magnetico di una stella è generato all'interno della sua zona convettiva, nella quale il plasma, messo in movimento dai moti convettivi, si comporta come una dinamo. L'intensità del campo varia in relazione alla massa e alla composizione della stella, mentre l'attività magnetica dipende dalla sua velocità di rotazione. Un risultato dell'attività magnetica sono le caratteristiche macchie fotosferiche, regioni a temperatura inferiore rispetto al testo della fotosfera in cui il campo magnetico si presenta particolarmente intenso. Altri fenomeni strettamente dipendenti dal campo magnetico sono gli anelli coronali ed i flare. |
L'aspetto schiacciato di Achernar (α Eridani) è causato dalla rapida rotazione sul proprio asse. |
La rotazione stellare è il movimento angolare di una stella sul proprio asse di rotazione, la cui durata può essere misurata in base al suo spettro o in maniera più accurata monitorando il periodo di rotazione delle strutture attive superficiali (macchie stellari).
|
![]() |
||||||||||||||||||
La Stella Pistola (in quest'immagine di HST con la Nebulosa Pistola) è una delle stelle più luminose conosciute: infatti irradia nell'arco di 20 secondi la stessa energia che il Sole irradierebbe in un anno. L'energia prodotta tramite le reazioni nucleari viene irradiata nello spazio sotto forma di onde elettromagnetiche e particelle; queste ultime vanno a costituire il vento stellare, costituito da particelle sia provenienti dagli strati esterni della stella, come protoni liberi, particelle alfa, beta e ioni di diverso tipo, sia dall'interno stellare, come i neutrini. dove 4πR2 indica la superficie della stella (approssimata a una sfera) e σ la costante di Stefan-Boltzmann. Numero di stelle per magnitudine
Entrambe le scale di magnitudine hanno un andamento logaritmico: una variazione di magnitudine di 1 unità equivale ad una variazione di luminosità di 2,5 volte, il che significa che una stella di prima magnitudine (+1,00) è circa 2,5 volte più brillante di una di seconda magnitudine (+2,00) e, quindi, circa 100 volte più brillante di una di sesta magnitudine (+6,00), che è la magnitudine limite sino alla quale l'occhio umano riesce a distinguere gli oggetti celesti. Δm = mf − mb La magnitudine apparente (m) e assoluta (M) di ciascuna stella non coincidono quasi mai, a causa sia della sua luminosità effettiva sia della sua distanza dalla Terra; ad esempio Sirio, la stella più brillante del cielo notturno, ha una magnitudine apparente di −1,44 ma una magnitudine assoluta di +1,41, e possiede una luminosità circa 23 volte quella del Sole. La nostra stella ha una magnitudine apparente di −26,7, ma la sua magnitudine assoluta è di appena +4,83; Canopo, la seconda stella più brillante del cielo notturno, ha invece una magnitudine assoluta di −5,53 ed è quasi 14 000 volte più luminosa del Sole. Nonostante Canopo sia enormemente più luminosa di Sirio, è quest'ultima ad apparire più brillante poiché è nettamente più vicina: dista infatti 8,6 anni luce dalla Terra, mentre Canopo è situata a 310 anni luce di distanza dal nostro pianeta. |
La magnitudine apparente (m) di una stella, pianeta o di un altro oggetto celeste è una misura della sua luminosità rilevabile dal punto d'osservazione. Poiché un oggetto estremamente luminoso può apparire molto debole se si trova ad una grande distanza, per superare il problema delle diverse distanze a cui si trovano gli oggetti celesti è necessario introdurre il concetto di magnitudine assoluta.
Più formalmente, la magnitudine apparente in una determinata banda x è definita tramite la formula di Pogson: dove Fx è il flusso osservato nella banda x, e C è una costante che dipende dalle unità usate. Si vede subito dalla definizione che più un oggetto è debole più la sua magnitudine è alta, contrariamente al senso comune. La seconda cosa da notare è che la scala è logaritmica: il rapporto fra le luminosità di due oggetti corrisponde quindi alla differenza delle loro magnitudini. Per esempio, una differenza di 3,2 significa che un oggetto è circa 19 volte più luminoso di un altro, perché il rapporto di Pogson elevato alla potenza di 3,2 è 19,054607... La natura logaritmica della scala è dovuta al fatto che l'occhio umano ha esso stesso una risposta logaritmica. Vedi anche legge di Weber-Fechner.
Tuttavia le stelle più fredde, come le giganti rosse e le nane rosse, emettono poca energia nelle parti blu ed UV del loro spettro, e la loro luminosità viene spesso sotto-stimata nella scala UBV. In effetti, alcune stelle di tipo L e T avrebbero una magnitudine UBV superiore a 100 perché emettono pochissima luce visibile, ma sono molto più luminose nell'infrarosso. L'originario sistema UBV è stato quindi integrato con due nuovi "colori", R ed I, centrati rispettivamente a 797 e 1220 nm (sistema di Johnson-Cousin). Una volta scelta la banda su cui osservare, bisogna anche ricordare che ogni rilevatore utilizzato per raccogliere la radiazione (pellicole, sensori CCD, fotomoltiplicatori...) ha una diversa efficienza al variare della frequenza del fotone incidente: dovremo quindi tenere conto anche di queste caratteristiche curve di risposta quando vogliamo risalire alla luminosità di un oggetto osservato. Nella pratica il passaggio dalle magnitudini strumentali a quantità di effettivo significato astrofisico avviene attraverso il confronto con opportune stelle standard, oggetti scelti come riferimento di cui si conosce la luminosità e la distribuzione spettrale. |
In astronomia, la magnitudine assoluta (detta anche luminosità assoluta) è la magnitudine apparente (m) che un oggetto avrebbe se si trovasse ad una distanza dall'osservatore di 10 parsec o 1 Unità Astronomica a seconda del tipo di oggetto (stellare/galattico o corpo del Sistema solare). Più semplicemente, è una misura della luminosità intrinseca di un oggetto, senza tener conto delle condizioni in cui si trova l'osservatore. Più un oggetto è intrinsecamente luminoso, più la sua magnitudine assoluta è numericamente bassa, anche negativa. |
La magnitudine limite è la magnitudine apparente della stella più debole presente nel campo visivo dell'osservatore. Questo valore dà un'indicazione della qualità del cielo che si sta osservando. |